了解强化学习(RL)代理的新兴行为可能很困难,因为这种代理通常使用高度复杂的决策程序在复杂的环境中进行训练。这引起了RL中解释性的多种方法,旨在调和可能在主体行为与观察者预期的行为之间产生的差异。最近的方法取决于域知识,这可能并非总是可用的,分析代理商的策略,或者是对基础环境的特定要素的分析,通常被建模为马尔可夫决策过程(MDP)。我们的主要主张是,即使基本的MDP尚不完全了解(例如,尚未准确地了解过渡概率),也没有由代理商维护(即,在使用无模型方法时),但仍可以利用它为自动生成解释。为此,我们建议使用以前在文献中使用的正式MDP抽象和转换来加快寻找最佳策略的搜索,以自动产生解释。由于这种转换通常基于环境的符号表示,因此它们可能代表了预期和实际代理行为之间差距的有意义的解释。我们正式定义了这个问题,建议一类可用于解释新兴行为的转换,并提出了有效搜索解释的方法。我们演示了一组标准基准测试的方法。
translated by 谷歌翻译
The SOTA algorithms for addressing QDec-POMDP issues, QDec-FP and QDec-FPS, are unable to effectively tackle problems that involve different types of sensing agents. We propose a new algorithm that addresses this issue by requiring agents to adopt the same plan if one agent is unable to take a sensing action but the other can. Our algorithm performs significantly better than both QDec-FP and QDec-FPS in these types of situations.
translated by 谷歌翻译
Instruction tuning enables pretrained language models to perform new tasks from inference-time natural language descriptions. These approaches rely on vast amounts of human supervision in the form of crowdsourced datasets or user interactions. In this work, we introduce Unnatural Instructions: a large dataset of creative and diverse instructions, collected with virtually no human labor. We collect 64,000 examples by prompting a language model with three seed examples of instructions and eliciting a fourth. This set is then expanded by prompting the model to rephrase each instruction, creating a total of approximately 240,000 examples of instructions, inputs, and outputs. Experiments show that despite containing a fair amount of noise, training on Unnatural Instructions rivals the effectiveness of training on open-source manually-curated datasets, surpassing the performance of models such as T0++ and Tk-Instruct across various benchmarks. These results demonstrate the potential of model-generated data as a cost-effective alternative to crowdsourcing for dataset expansion and diversification.
translated by 谷歌翻译
Users' physical safety is an increasing concern as the market for intelligent systems continues to grow, where unconstrained systems may recommend users dangerous actions that can lead to serious injury. Covertly unsafe text, language that contains actionable physical harm, but requires further reasoning to identify such harm, is an area of particular interest, as such texts may arise from everyday scenarios and are challenging to detect as harmful. Qualifying the knowledge required to reason about the safety of various texts and providing human-interpretable rationales can shed light on the risk of systems to specific user groups, helping both stakeholders manage the risks of their systems and policymakers to provide concrete safeguards for consumer safety. We propose FARM, a novel framework that leverages external knowledge for trustworthy rationale generation in the context of safety. In particular, FARM foveates on missing knowledge in specific scenarios, retrieves this knowledge with attribution to trustworthy sources, and uses this to both classify the safety of the original text and generate human-interpretable rationales, combining critically important qualities for sensitive domains such as user safety. Furthermore, FARM obtains state-of-the-art results on the SafeText dataset, improving safety classification accuracy by 5.29 points.
translated by 谷歌翻译
We study grammar induction with mildly context-sensitive grammars for unsupervised discontinuous parsing. Using the probabilistic linear context-free rewriting system (LCFRS) formalism, our approach fixes the rule structure in advance and focuses on parameter learning with maximum likelihood. To reduce the computational complexity of both parsing and parameter estimation, we restrict the grammar formalism to LCFRS-2 (i.e., binary LCFRS with fan-out two) and further discard rules that require O(n^6) time to parse, reducing inference to O(n^5). We find that using a large number of nonterminals is beneficial and thus make use of tensor decomposition-based rank-space dynamic programming with an embedding-based parameterization of rule probabilities to scale up the number of nonterminals. Experiments on German and Dutch show that our approach is able to induce linguistically meaningful trees with continuous and discontinuous structures
translated by 谷歌翻译
Targeted syntactic evaluations of language models ask whether models show stable preferences for syntactically acceptable content over minimal-pair unacceptable inputs. Most targeted syntactic evaluation datasets ask models to make these judgements with just a single context-free sentence as input. This does not match language models' training regime, in which input sentences are always highly contextualized by the surrounding corpus. This mismatch raises an important question: how robust are models' syntactic judgements in different contexts? In this paper, we investigate the stability of language models' performance on targeted syntactic evaluations as we vary properties of the input context: the length of the context, the types of syntactic phenomena it contains, and whether or not there are violations of grammaticality. We find that model judgements are generally robust when placed in randomly sampled linguistic contexts. However, they are substantially unstable for contexts containing syntactic structures matching those in the critical test content. Among all tested models (GPT-2 and five variants of OPT), we significantly improve models' judgements by providing contexts with matching syntactic structures, and conversely significantly worsen them using unacceptable contexts with matching but violated syntactic structures. This effect is amplified by the length of the context, except for unrelated inputs. We show that these changes in model performance are not explainable by simple features matching the context and the test inputs, such as lexical overlap and dependency overlap. This sensitivity to highly specific syntactic features of the context can only be explained by the models' implicit in-context learning abilities.
translated by 谷歌翻译
Reranking methods in machine translation aim to close the gap between common evaluation metrics (e.g. BLEU) and maximum likelihood learning and decoding algorithms. Prior works address this challenge by training models to rerank beam search candidates according to their predicted BLEU scores, building upon large models pretrained on massive monolingual corpora -- a privilege that was never made available to the baseline translation model. In this work, we examine a simple approach for training rerankers to predict translation candidates' BLEU scores without introducing additional data or parameters. Our approach can be used as a clean baseline, decoupled from external factors, for future research in this area.
translated by 谷歌翻译
Multilingual machine translation models can benefit from synergy between different language pairs, but also suffer from interference. While there is a growing number of sophisticated methods that aim to eliminate interference, our understanding of interference as a phenomenon is still limited. This work identifies the main factors that contribute to interference in multilingual machine translation. Through systematic experimentation, we find that interference (or synergy) are primarily determined by model size, data size, and the proportion of each language pair within the total dataset. We observe that substantial interference occurs mainly when the model is very small with respect to the available training data, and that using standard transformer configurations with less than one billion parameters largely alleviates interference and promotes synergy. Moreover, we show that tuning the sampling temperature to control the proportion of each language pair in the data is key to balancing the amount of interference between low and high resource language pairs effectively, and can lead to superior performance overall.
translated by 谷歌翻译
In-context learning has shown great success in i.i.d semantic parsing splits, where the training and test sets are drawn from the same distribution. In this setup, models are typically prompted with demonstrations that are similar to the input question. However, in the setup of compositional generalization, where models are tested on outputs with structures that are absent from the training set, selecting similar demonstrations is insufficient, as often no example will be similar enough to the input. In this work, we propose a method to select diverse demonstrations that aims to collectively cover all of the structures required in the output program, in order to encourage the model to generalize to new structures from these demonstrations. We empirically show that combining diverse demonstrations with in-context learning substantially improves performance across three compositional generalization semantic parsing datasets in the pure in-context learning setup and when combined with finetuning.
translated by 谷歌翻译
Objective: Evictions are involved in a cascade of negative events that can lead to unemployment, homelessness, long-term poverty, and mental health problems. In this study, we developed a natural language processing system to automatically detect eviction incidences and their attributes from electronic health record (EHR) notes. Materials and Methods: We annotated eviction status in 5000 EHR notes from the Veterans Health Administration. We developed a novel model, called Knowledge Injection based on Ripple Effects of Social and Behavioral Determinants of Health (KIRESH), that has shown to substantially outperform other state-of-the-art models such as fine-tuning pre-trained language models like BioBERT and Bio_ClinicalBERT. Moreover, we designed a prompt to further improve the model performance by using the intrinsic connection between the two sub-tasks of eviction presence and period prediction. Finally, we used the Temperature Scaling-based Calibration on our KIRESH-Prompt method to avoid over-confidence issues arising from the imbalance dataset. Results: KIRESH-Prompt achieved a Macro-F1 of 0.6273 (presence) and 0.7115 (period), which was significantly higher than 0.5382 (presence) and 0.67167 (period) for just fine-tuning Bio_ClinicalBERT model. Conclusion and Future Work: KIRESH-Prompt has substantially improved eviction status classification. In future work, we will evaluate the generalizability of the model framework to other applications.
translated by 谷歌翻译